ما هي القيود المفروضة على العمل مع مجموعات البيانات الكبيرة في التعلم الآلي؟
عند التعامل مع مجموعات البيانات الكبيرة في التعلم الآلي، هناك العديد من القيود التي يجب أخذها في الاعتبار لضمان كفاءة وفعالية النماذج التي يتم تطويرها. يمكن أن تنشأ هذه القيود من جوانب مختلفة مثل الموارد الحسابية، وقيود الذاكرة، وجودة البيانات، وتعقيد النموذج. أحد القيود الأساسية لتثبيت مجموعات البيانات الكبيرة
- نشرت في الذكاء الاصطناعي, EITC/AI/GCML تعلم الآلة على Google Cloud, التقدم في تعلم الآلة, BigQuery وفتح مجموعات البيانات في GCP
هل يمكن مقارنة الشبكة العصبية العادية بوظيفة تضم ما يقرب من 30 مليار متغير؟
يمكن بالفعل مقارنة الشبكة العصبية العادية بوظيفة تضم ما يقرب من 30 مليار متغير. لفهم هذه المقارنة، نحتاج إلى النظر في المفاهيم الأساسية للشبكات العصبية والآثار المترتبة على وجود عدد كبير من المعلمات في النموذج. الشبكات العصبية هي فئة من نماذج التعلم الآلي المستوحاة من
- نشرت في الذكاء الاصطناعي, التعلم العميق لـ EITC/AI/DLPP باستخدام Python و PyTorch, المُقدّمة, مقدمة للتعلم العميق باستخدام Python و Pytorch
ما هو التخصيص الزائد في التعلم الآلي ولماذا يحدث؟
يعد التجهيز الزائد مشكلة شائعة في التعلم الآلي حيث يؤدي النموذج أداءً جيدًا للغاية على بيانات التدريب ولكنه يفشل في التعميم على البيانات الجديدة غير المرئية. يحدث ذلك عندما يصبح النموذج معقدًا للغاية ويبدأ في حفظ الضوضاء والقيم المتطرفة في بيانات التدريب ، بدلاً من تعلم الأنماط والعلاقات الأساسية. في
- نشرت في الذكاء الاصطناعي, أساسيات EITC/AI/TFF TensorFlow, مشاكل التجهيز, حل مشاكل فرط التخصيص والنقص في النموذج - الجزء 2, مراجعة الامتحان